APPENDIX 4-A HY8 CULVERT ANALYSIS - MICROCOMPUTER PROGRAM

4-A-2 Appendix A

Data Input For Culvert

As an initial size estimate, try a 24 inch circular culvert. For the culvert assume that a conventional inlet with head-wall and square edges will be used. As each group of data are entered the user is allowed to edit any incorrect entries. The following will show the computer screens that the user will see.

After inputting the word CULVERT to start the program the following will appear on the computer screen.

CULVERT FILE MENU

TYPE LETTER OF DESIRED OPTION

<E> EDIT OR USE A FILE

<C> CREATE A FILE

<ESC> FOR MAIN PROGRAM MENU

Input a name for the file that will store all input data and press return to have the computer input the current date.

TYPE NEW CULVERT FILE NAME

FILE NAME ---> TEST

TYPE DATE OR <ENTER> FOR CURRENT DATE

DATE --->

<ESC> TO RETURN TO CULVERT FILE MENU

4-A-3

Input the design discharge (10-year peak discharge) and the maximum discharge (100-year peak discharge).

ENTER DESIGN AND MAXIMUM FLOW	
<1> MINIMUN DISCHARGE (CFS)	0.0
<2> DESIGN DISCHARGE (CFS)	60.0
<3> MAXIMUM DISCHARGE (CFS)	110.0
<pre><number> TO EDIT DISCHARGE <enter> TO CONTINUE</enter></number></pre>	

Select <2> Culvert Invert Data

Input the culvert invert data which will be used to determine the length, slope, and elevations associated with this culvert installation.

CULVERT INVERT DATA	
NO. ITEM	VALUE
<pre><1> INLET STATION (FT) <2> INLET ELEVATION (FT) <3> OUTLET STATION (FT) <4> OUTLET ELEVATION (FT) <5> ENTER NUMBER OF BARRELS</pre>	100.00 950.00 175.00 947.00

Select a culvert shape (for this example a circular culvert was selected)

SELECT	A CULVERT SHAPE:
<1>	CIRCULAR
<2>	BOX
<3>	ELLIPTICAL
<4>	PIPE ARCH
<5>	USER DEFINED (COORDINATES)
<6>	ARCH
<7>	LOW-PROFILE ARCH
<8>	HIGH-PROFILE ARCH
<9>	METAL BOX

4-A-4 Appendix A

Specify the culvert diameter to be used for the first analysis.

CIRCULAR CULVERT

CULVERT DIAMETER (FT) ---> 2*

<ESC> TO RETURN TO SHAPE MENU

Select a culvert material (for this example a concrete culvert was selected).

SELECT A CULVERT MATERIAL:

<1> CONCRETE

<2> CORRUGATED STEEL PLATE

<3> CORRUGATED ALUMINUM PLATE

Select an inlet type (for this example a conventional inlet was selected).

SELECT AN INLET TYPE:

<1> CONVENTIONAL

<2> SIDE-TAPERED, CIRCULAR

<3> SIDE-TAPERED, RECTANGULAR

<4> SLOPE TAPERED

Select inlet conditions (for this example square edge with headwall was selected). Then specify if there is inlet depression (this example did not include any inlet depression).

SELECT AN INLET CONDITION:

CONVENTIONAL INLETS

<3> SQUARE EDGE WITH HEADWALL

<4> GROOVED END PROJECTION

<5> GROOVED END IN HEADWALL

<6> BEVELED EDGE (1:1)

<7> BEVELED EDGE (1.5:1)

Appendix A 4-A-5

Following is a summary table of the culvert input data.

SELECTED CULVERT ITEM <1> BARREL SHAPE: CIRCULAR 2.00 FT DIAMETER <2> BARREL SIZE: CONCRETE <3> BARREL MATERIAL: .012 <4> MANNING'S n: CONVENTIONAL <5> INLET TYPE: SQUARE EDGE WITH HEADWALL <6> INLET EDGE AND WALL: NONE <7> INLET DEPRESSION: <NUMBER> TO EDIT ITEM TO CONTINUE DATA LISTING

At this point the user can edit any of the input data or press < ENTER > to continue.

Data Input Downstream Channel

Following are the data related to the channel downstream from the culvert.

For the calculation of tailwater conditions, select the shape of the channel directly downstream from the outlet of the culvert (for this example a rectangular channel was selected).

TAILWATER RATING CURVE

PRESS NUMBER OF OPTION

- <1> RECTANGULAR CHANNEL
- <2> TRAPEZOIDAL CHANNEL
- <3> TRIANGULAR CHANNEL
- <4> IRREGULAR CHANNEL (MAX. 15 COORDINATES)
- <5> ENTER RATING CURVE (11 POINTS)
- <6> ENTER CONSTANT TAILWATER ELEVATION

4-A-6 Appendix A

For the downstream channel, input the bottom width, channel slope, Manning's n, and channel invert elevation.

ENTER TAILWATER CHANNEL DATA	
NO. ITEM	VALUE
<1> BOTTOM WIDTH (FT)	5
<2> SIDE SLOPE H:V:1	
<3> CHANNEL SLOPE (FT/FT)	.04
<4> MANNING'S N (.01-0.1)	.045
<5> CHANNEL INVERT ELEVATION (FT)	947
CULVERT INVERT ELEVATION (FT) (CULVERT NO. 1 OUTLET)	947.00
<pre><number> TO EDIT ITEM <enter> TO CONTINUE DATA INPUT <esc> FOR CHANNEL SHAPE MENU</esc></enter></number></pre>	

The table showing the Tailwater Rating Curve Data will now be calculated by the model. By pressing P you can obtain a plot of the Tailwater Data (Downstream Channel Rating Curve).

	ALLAT	VATER RATING	CURVE	
NO.	FLOW(CFS)	T.W.E. (FT)	VEL. (FPS)	SHEAR (PSF)
1	Ò.00		0.00	
2	11.00	947.56	3.92	1.40
3	22.00	947.88	4.97	2.21
4	33.00	948.16	5.67	2.91
5	44.00	948.42	6.19	3.55
6	55.00	948.67	6.60	4.16
7	60.00	948.77	6.77	4.43
8	77.00	949.13	7.24	5.31
9	88.00	949.35	7.50	5.86
10	99.00	949.56	7.73	
11	110.00	949.77	7.93	6.93
	PRESS:			
	<d></d>	FOR DATA		
ATTENDED IN THE PERSON NAMED IN THE PERSON NAM	<p></p>	TO PLOT RAT	ING CURVE	
	<esc></esc>	FOR CHANNEL	SHAPE MEN	U
	<enter></enter>	TO CONTINUE		

Data Input Roadway

For overtopping analysis additional data will be needed about the roadway over the culvert installation.

Select a profile shape for the roadway above the culvert installation (for this example a constant roadway elevation was selected).

ROADWAY PROFILE SHAPE FOR OVERTOPPING ANALYSIS

SELECT PROFILE SHAPE:

<1> CONSTANT ROADWAY ELEVATION

<2> IRREGULAR (3 TO 15 COORDINATES)

Input the crest length and overtopping crest elevation.

ENTER PROFILE DATA	
NO. ITEM	VALUE
<1> CREST LENGTH (FT)	50
<pre><2> OVERTOPPING CREST ELEVATION (FT)</pre>	955*

Select a weir coefficient for the roadway section (for this example a paved roadway surface was selected).

WEIR COEFFICIENTS

SELECT ROADWAY SURFACE OR A WEIR COEFFICIENT:

- <1> PAVED ROADWAY SURFACE
- <2> GRAVEL ROADWAY SURFACE
- <3> INPUT COEFFICIENT OF DISCHARGE (2.5 3.095)

<ESC> FOR LAST MENU

Select an overtopping crest elevation.

SELECTED OVERTOPPING CREST

- <1> SHAPE: CONSTANT ROADWAY ELEVATION 955 FT
- <2> CROSS-SECTION DATA
- <3> ROADWAY SURFACE: P
- <4> EMBANKMENT TOP WIDTH (FT): 60*

Following is a summary table of the data input.

COTA	LVERT FILE: TEST SUMMARY TABLE CULVERT N						
C	<s></s>	SITE DATA	<c></c>	CULVER	RT SHAPE,	MATERIAL	L, INLET
NO. 1 2 3 4 5	(FT)	OUTLET CULVERT ELEV. LENGTH (FT) (FT) 947.00 75	BARRELS SHAPE MATERIAL 1 - RCP	(FI	r) (FT)	n	G INLET TYPE CONVENTIONAL
	<c> <d> <o> <s></s></o></d></c>	DISCHARGE DATA OVERTOPPING DATA SITE DATA TAILWATER RATING	<	:E> I (M> N (A> A	IO EDIT CULVI MINIMIZE C ADD OR DEI	CULVERT	SPAN

The user can now edit any data input either to correct errors or to try different analysis for different conditions or culvert designs.

Analysis

Overtopping Analysis - If the user wants to take into account roadway overtopping, then this alternative should be selected. Otherwise select the no overtopping analysis option. The model will then perform the flow analysis and calculate how much flow will pass through the culvert and how much flow will overtop the roadway. The user can then plot the culvert rating curve and/or print a summary of the culvert data and analysis.

		PRESS LETTER OF DESIRED OPTION OVERTOPPING ANALYSIS Inlet Control - HDS5 Nomographs Outlet Control - Full Barrel Flow Overtopping - Wier Equation <n> NO OVERTOPPING ANALYSIS (CULVERT N Inlet Control - HDS5 Nomographs Outlet Control - Full Barrel Flow</n>						UMBER 1)		
			<s> S. <d> D. <f> F.</f></d></s>	UTLET CONT AVE MENU ATA SUMMAR ILE MENU AIN MENU	RY SAVE	FILE BEI		or <m></m>		
1HELP	2	3	4	5END	6	7	8	9SE	HELL 10	
	. OE 0	THARPA E	LOWS (CF	S)	FILE:	TEST		DAT		
SUMMAR	COF	OTA TIVE								
SUMMARY ELEV (1	TT)	TOTAL	1	ž	3	4	5	6	OVERTOP	ITE
SUMMARY ELEV (E	TT)	TOTAL	1 0	Z 0	3 0	4 0	5 0	6 0	OVERTOP 0	ITE 0
SUMMARY ELEV (F 950.0	FT)	TOTAL 0 11	1 0 11	2 0 0	3 0 0	4 0 0	5 0 0	6 0 0	OVERTOP 0 0	ITE 0
SUMMARY ELEV (E 950.0 951.7 953.2	FT) 00 77	TOTAL 0 11 22	1 0 11 22	2 0 0 0	3 0 0	4 0 0 0	5 0 0	6 0 0	OVERTOP 0 0 0	O 1
SUMMARY ELEV (1 950.0 951.7 953.2	FT) 00 77 23	TOTAL 0 11 22 33	1 0 11 22 31	2 0 0 0 0	3 0 0 0	4 0 0 0 0	5 0 0 0	6 0 0 0	OVERTOP 0 0 0 3	0 1 1 2
SUMMARY ELEV (E 950.0 951.7 953.2 955.0	FT) 00 77 23 07	TOTAL 0 11 22 33 44	1 0 11 22 31 31	2 0 0 0 0	3 0 0 0 0	4 0 0 0 0	5 0 0 0	6 0 0 0 0	OVERTOP 0 0 0 3 13	ITE 0 1 2 2
SUMMARY 950.0 951.7 953.2 955.0 955.2	FT) 00 77 23 07 20 30	TOTAL 0 11 22 33 44 55	1 0 11 22 31 31 31	2 0 0 0 0 0	3 0 0 0 0	4 0 0 0 0 0	5 0 0 0 0 0	6 0 0 0 0	OVERTOP 0 0 0 3 13 24	1 1 2 2 2
ELEV (E 950.0 951.7 953.2 955.0 955.2 955.3	FT) 00 77 23 07 20 30 30 33	TOTAL 0 11 22 33 44 55 60	1 0 11 22 31 31 31 32 32	2 0 0 0 0 0	3 0 0 0 0 0 0	4 0 0 0 0 0 0	5 0 0 0 0	6 0 0 0 0 0	OVERTOP 0 0 0 3 13 24 29	1 0 1 2 2 2
SUMMARY 950.0 951.7 955.0 955.0 955.3 955.3	FT) 00 77 23 07 20 30 33 45	TOTAL 0 11 22 33 44 55 60 77	1 0 11 22 31 31 31 32 32 32	2 0 0 0 0 0 0	3 0 0 0 0 0 0	4 0 0 0 0 0 0 0	5 0 0 0 0 0	6 0 0 0 0 0 0	OVERTOP 0 0 0 3 13 24 29 45	1 1 2 2 2 2 2 2
SUMMARY 950.0 951.7 953.0 955.2 955.2 955.3 955.3	FT) 00 77 23 07 20 30 33 45	TOTAL 0 11 22 33 44 55 60 77 88	1 0 11 22 31 31 31 32 32 32 32 32	2 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0	5 0 0 0 0 0 0	6 0 0 0 0 0 0	OVERTOP 0 0 0 3 13 24 29 46 55	1 1 2 2 2 2 2 2
ELEV (E 950.0 951.7 953.2 955.2 955.3 955.3 955.4 955.5	FT) 00 77 23 07 20 30 30 33 45 52	TOTAL 0 11 22 33 44 55 60 77 88 99	1 0 11 22 31 31 32 32 32 32 32	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0	6 0 0 0 0 0 0	OVERTOP 0 0 0 0 3 13 24 29 45 55 67	1 1 2 2 2 2 2 2 2 2 2
ELEV (E 950.0 951.7 953.2 955.2 955.3 955.3 955.4 955.5	FT) 00 77 23 07 20 30 30 33 45 52	TOTAL 0 11 22 33 44 55 60 77 88 99 110	1 0 11 22 31 31 32 32 32 32 33 33	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0		6 0 0 0 0 0 0 0	OVERTOP 0 0 0 3 13 24 29 46 56 67 78	1TE 0 1 2 2 2 2 2 2 2 2
ELEV (E 950.0 951.7 953.2 955.2 955.3 955.3 955.4 955.5	FT) 00 77 23 07 20 30 30 33 45 52 58	TOTAL 0 11 22 33 44 55 60 77 88 99	1 0 11 22 31 31 32 32 32 32 33 33	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

4-A-10 Appendix A

Changing Data

After reviewing the data for the first analysis, it is obvious that too much flow is overtopping the road with very little flow passing through the culvert. Thus another analysis will be performed with the overtopping elevation increased to 955.

Before leaving the first analysis be sure to save the file (for this example the file was saved under the name TEST).

SAVE MENU

TYPE LETTER OF DESIRED OPTION

<R>> TO RENAME FILE

<F>> FOR FILE LISTING

<S> TO SAVE FILE

<ENTER> TO RETURN

Return to the Culvert File Menu and select <E> to edit an existing file.

CULVERT FILE MENU

TYPE LETTER OF DESIRED OPTION

<E> EDIT OR USE A FILE

<C> CREATE A FILE

<ESC> FOR MAIN PROGRAM MENU

Select C for culvert data and select #2 to change the culvert size from 2 to 3 feet,

CIRCULAR CULVERT

CULVERT DIAMETER (FT) ---> 3*

Appendix A 4-A-11

Proceed with the overtopping analysis and obtain the following results.

SUMMARY OF	CULVERT 1	FLOWS (CF:	5)	FILE:	TEST		DA	TE:	
ELEV (FT)	TOTAL	1	2	3	. 4	5	6	OVERTOP	ITER
950.00	0	٥	0	0	0	0	0	0	0
951.39	11	11	0	0	0	0	0	0	1 .
952.17	22	. 22	0	0	0	0	0	0	1
952.82	33	33	0	0	0	0	0	0	1
953.51	4.4	44	0	0	0	0	0	. 0	1
954.35	5.5	55	0	0	. 0	0	0	O	1
954.79	60	60	0	0	0	0	0	0	1
955.21	77	64	0	.0	. 0	0	0	14	3
955.30	88	65	0	0	0	0	0	24	3
955.38	99	66	0	0	0	0	0	35	3
	1.10	67	0	0	0	0	0	45	3
955.00	62	62	0	0	0	0	0	(OVERTOP)	PING)
PRE	<3> TO	O PLOT TO O DETERMI O SEE MUL O PRINT C R> TO RET	NE SPECI: FIPLE CUI ULVERT SI	FIC INFO LVERT CO UMMARY	RMATION A	ABOUT EAGNAL ERROI	CH CUI R TABI	WERT Æ	

This table shows that the design flow of 60 cfs will pass through the culvert while the additional flow from the 100-year storm will overtop the roadway.

Additional Analysis

Numerous other design selections could be analyzed included different culvert materials, improved inlets, different size culverts, etc. In addition, the model has another feature that is very useful. When the Summary Table appears on the screen there is an option <M> which will calculate the minimum size culvert need to accommodate the design flow given the other data provided in the analysis. Using this option, the following table shows that a 2.5 ft (30 inch) culvert could be used if the allowable headwater elevation could be increased to 957.21.

	VERT ANALY			SUMMARY TA	ABLE		DATE: CULVE	
С	<s></s>	SITE DA	ATA	<c></c>	CULVERT	SHAPE,	MATERIAL	, INLET
U V NO. 1 2 3 4 5 6	ELEV.	ELEV.	(FT)	SHAPE MATERIAL	(FT)	(FT)	n	INLET TYPE CONVENTIONAL
I	CONTROLLI NLET CONTR	NG =	957.56 957.56	CHANNEL DISCHARGE	≈ 6. ≈ 60.	77	CHANNEL NORMAL	T DEPTHS - 1.50 = 1.77 = 1.50 . = 2.50